Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(45): 9564-9579, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934888

RESUMO

We investigate the gas-phase photo-oxidation of 2-ethoxyethanol (2-EE) initiated by the OH radical with a focus on its autoxidation pathways. Gas-phase autoxidation─intramolecular H-shifts followed by O2 addition─has recently been recognized as a major atmospheric chemical pathway that leads to the formation of highly oxygenated organic molecules (HOMs), which are important precursors for secondary organic aerosols (SOAs). Here, we examine the gas-phase oxidation pathways of 2-EE, a model compound for glycol ethers, an important class of volatile organic compounds (VOCs) used in volatile chemical products (VCPs). Both experimental and computational techniques are applied to analyze the photochemistry of the compound. We identify oxidation products from both bimolecular and autoxidation reactions from chamber experiments at varied HO2 levels and provide estimations of rate coefficients and product branching ratios for key reaction pathways. The H-shift processes of 2-EE peroxy radicals (RO2) are found to be sufficiently fast to compete with bimolecular reactions under modest NO/HO2 conditions. More than 30% of the produced RO2 are expected to undergo at least one H-shift for conditions typical of modern summer urban atmosphere, where RO2 bimolecular lifetime is becoming >10 s, which implies the potential for glycol ether oxidation to produce considerable amounts of HOMs at reduced NOx levels and elevated temperature. Understanding the gas-phase autoxidation of glycol ethers can help fill the knowledge gap in the formation of SOA derived from oxygenated VOCs emitted from VCP sources.

2.
J Phys Chem A ; 127(44): 9311-9321, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37877667

RESUMO

Recently, hydroperoxy amides were identified as major products of OH-initiated autoxidation of tertiary amines in the atmosphere. The formation mechanism is analogous to that found for ethers and sulfides but substantially faster. However, the atmospheric fate of the hydroperoxy amides remains unknown. Using high-level theoretical methods, we study the most likely OH-initiated oxidation pathways of the hydroperoxy and dihydroperoxy amides derived from trimethylamine autoxidation. Overall, we find that the OH-initiated oxidation of the hydroperoxy amides predominantly leads to the formation of imides under NO-dominated conditions and more highly oxidized hydroperoxy amides under HO2-dominated conditions. Unimolecular reactions are found to be surprisingly slow, likely due to the restricting, planar structure of the amide moiety.

3.
J Phys Chem A ; 127(41): 8623-8632, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37802497

RESUMO

Autoxidation has been acknowledged as a major oxidation pathway in a broad range of atmospherically important compounds including isoprene and monoterpenes. More recently, autoxidation has also been identified as central and even dominant in the atmospheric oxidation of the rather small nonhydrocarbons dimethyl sulfide (DMS) and trimethylamine (TMA). Here, we find even faster autoxidation in the aliphatic amine triethylamine (TEA). The atmospherically dominating autoxidation leads to highly oxygenated and functionalized compounds. Products with as many as three hydroperoxy (OOH) groups and an O:C ratio larger than 1 are formed. We present theoretical multiconformer transition-state theory (MC-TST) calculations of the unimolecular reactions in the autoxidation following the OH + TEA reaction and calculate peroxy radical H-shift rate coefficients >20 s-1 for the first two generations of H-shifts. The efficient autoxidation in TEA is verified by the observation of the proposed highly oxidized products and radicals in flow-tube experiments. We find that the initial OH hydrogen abstraction at the α-carbon is strongly favored, with the ß-carbon abstraction yield being less than a few percent.

5.
J Phys Chem A ; 126(37): 6483-6494, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36053271

RESUMO

Alkoxy radicals are important intermediates in the gas-phase oxidation of volatile organic compounds (VOCs) determining the nature of the first-generation products. An accurate description of their chemistry under atmospheric conditions is essential for understanding the atmospheric oxidation of VOCs. Unfortunately, experimental measurements of the rate coefficients of unimolecular alkoxy radical reactions are scarce, especially for larger systems. As has previously been done for peroxy radical hydrogen shift reactions, we present a cost-effective approach to the practical implementation of multiconformer transition state theory (MC-TST) for alkoxy radical unimolecular (H-shift and decomposition) reactions. Specifically, we test the optimal approach for the conformational sampling as well as the best value for a cutoff of high-energy conformers. In order to obtain accurate rate coefficients at a reduced computational cost, an energy cutoff is employed to reduce the required number of high-level calculations. The rate coefficients obtained with the developed theoretical approach are compared to available experimental rate coefficients for both 1,5 H-shifts and decomposition reactions. For all but one of the reactions tested, the calculated MC-TST rate coefficients agree with experimental results to within a factor of 7. The discrepancy for the final reaction is about a factor of 15, but part of the discrepancy is caused by pressure effects, which are not included in MC-TST. Thus, for the fastest alkoxy reactions, deviation from the high-pressure limit even at 1 bar should be considered.

6.
Science ; 376(6596): 979-982, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617402

RESUMO

Organic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO2) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO2 radicals. Kinetic analysis confirmed rapid RO2 + OH reactions forming ROOOH, with rate coefficients close to the collision limit. For the OH-initiated degradation of isoprene, global modeling predicts molar hydrotrioxide formation yields of up to 1%, which represents an annual ROOOH formation of about 10 million metric tons. The atmospheric lifetime of ROOOH is estimated to be minutes to hours. Hydrotrioxides represent a previously omitted substance class in the atmosphere, the impact of which needs to be examined.

7.
Environ Sci Technol ; 56(4): 2213-2224, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119266

RESUMO

Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.


Assuntos
Monoterpenos , Aerossóis/química , Monoterpenos Bicíclicos , Monoterpenos/química , Oxirredução
8.
J Phys Chem A ; 125(50): 10640-10648, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34904843

RESUMO

Fourier transform infrared spectroscopy has been used to follow the reaction of CH3OCF2CHF2 with either Cl or OH radicals within a photoreactor. Rate constants of k(OH + CH3OCF2CHF2) = (2.25 ± 0.60) × 10-14 cm3 molecule-1 s-1 and k(Cl + CH3OCF2CHF2) = (2.50 ± 0.39) × 10-13 cm3 molecule-1 s-1 were determined at 296 ± 2 K. Theoretical and experimental investigation of the Cl + CH3OCF2CHF2 reaction identified the formation of two main products, HC(O)OCF2CHF2 and COF2. Chlorine (and OH) radicals react with CH3OCF2CHF2 by H-abstraction from either the -CH3 or -CHF2 site. Abstraction from the -CH3 site was determined to constitute at least 60%, as determined from the formation of the primary product, HC(O)OCF2CHF2, which can only form from this abstraction site. At longer reaction times, HC(O)OCF2CHF2 further reacts and the yield of COF2 approaches two, the maximum possible with the number of F atoms in the reactant. The atmospheric lifetime of CH3OCF2CHF2 with OH radicals was determined to be 1.4 years. The global warming potentials over 20-, 100-, and 500-year time horizons were estimated to be 325, 88, and 25, respectively.

9.
J Phys Chem A ; 125(40): 8933-8941, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34601880

RESUMO

The atmospheric oxidation mechanisms of reduced sulfur compounds are of great importance in the biogeochemical sulfur cycle. The CH3S radical represents an important intermediate in these oxidation processes. Under atmospheric conditions, CH3S will predominantly react with O2 to form the peroxy radical CH3SOO. The formed CH3SOO has two competing unimolecular reaction pathways: isomerization to CH3SO2, which further decomposes into CH3 and SO2, or a hydrogen shift followed by HO2 loss, leading to CH2S. Previous theoretical calculations have suggested that CH2S formation should be the dominant pathway, in disagreement with existing experimental results. Our large active space multireference configuration interaction calculations agree with the experimental results that the formation of CH3 and SO2 is the dominant route and the formation of CH2S and HO2 can, at most, be a minor pathway. We support the calculations with new experiments starting from the OH + CH3SH reaction for CH3S formation under low NOx conditions and find a SO2 yield of 0.86 ± 0.18 within our reaction time of 7.9 s. Model simulations of our experiments show that the SO2 yield converges to 0.98. This combined theoretical and experimental study thus furthers the understanding of the general oxidation mechanisms of sulfur compounds in the atmosphere.

10.
J Phys Chem A ; 125(20): 4454-4466, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33978422

RESUMO

Autoxidation in the atmosphere has been realized in the last decade as an important process that forms highly oxidized products relevant for the formation of secondary organic aerosol and likely with detrimental human health effects. It is experimentally shown that the OH radical-initiated oxidation of trimethylamine, the most highly emitted amine in the atmosphere, proceeds via rapid autoxidation steps dominating its atmospheric oxidation process. All three methyl groups are functionalized within a timescale of 10 s following the reaction with OH radicals leading to highly oxidized products. The exceptionally large density of functional groups in the oxidized products is expected to define their chemical properties. A detailed reaction mechanism based on theoretical calculations is able to describe the experimental findings. The comparison with results of the reinvestigated OH radical- and ozone-initiated autoxidation of a series of terpenes and aromatics reveals the trimethylamine process as the most efficient one discovered up to now for atmospheric conditions.

12.
J Phys Chem A ; 125(2): 669-680, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33432816

RESUMO

Limonene is one of the monoterpenes with the largest biogenic emissions and is also widely used as an additive in cleaning products, leading to significant indoor emissions. Studies have found that the formation of secondary organic aerosols (SOAs) from limonene oxidation has important implications for indoor air quality. Although ozonolysis is considered the major limonene oxidation pathway under most indoor conditions, little is known about the mechanisms for SOA formation from limonene ozonolysis. Here, we calculate the rate coefficients of the possible unimolecular reactions of the first-generation peroxy radicals formed by limonene ozonolysis using a high-level multiconformer transition state theory approach. We find that all of the peroxy radicals formed initially in the ozonolysis of limonene react unimolecularly with rates that are competitive both indoors and outdoors, except under highly polluted conditions. Differences in reactivity between the peroxy radicals from ozonolysis and those formed by OH, NO3, and Cl oxidation are discussed. Finally, we sketch possible oxidation mechanisms for the different peroxy radicals under both indoor and pristine atmospheric conditions and in more polluted environments. In environments with low concentrations of HO2 and NO, efficient autoxidation will lead to the formation of highly oxygenated organic compounds and thus likely aid in the growth of SOA.

13.
Environ Sci Technol ; 54(21): 13467-13477, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33084314

RESUMO

Emissions of aromatic compounds cause air pollution and detrimental health effects. Here, we explore the reaction kinetics and products of key radicals in benzene photo-oxidation. After initial OH addition and reaction with O2, the effective production rates of phenol and bicyclic peroxy radical (BCP-peroxy) are experimentally constrained at 295 K to be 420 ± 80 and 370 ± 70 s-1, respectively. These rates lead to approximately 53% yield for phenol and 47% yield for BCP-peroxy under atmospheric conditions. The reaction of BCP-peroxy with NO produces bicyclic hydroxy nitrate with a branching ratio <0.2%, indicating efficient NOx recycling. Similarly, the reaction of BCP-peroxy with HO2 largely recycles HOx, producing the corresponding bicyclic alkoxy radical (BCP-oxy). Because of the presence of C-C double bonds and multiple functional groups, the chemistry of BCP-oxy and other alkoxy radicals in the system is diverse. Experimental results suggest the aldehydic H-shift and ring-closure to produce an epoxide functionality could be competitive with classic decomposition of alkoxy radicals. These reactions are potential sources of highly oxygenated molecules. Finally, despite the large number of compounds observed in our study, we are unable to account for ∼20% of the carbon flow.


Assuntos
Benzeno , Compostos Orgânicos , Cinética , Oxirredução
14.
Chem Commun (Camb) ; 56(88): 13634-13637, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33063068

RESUMO

The atmospheric reaction of OH radicals with dimethyl disulfide, CH3SSCH3, proceeds primarily via OH addition forming CH3S and CH3SOH as reactive intermediates, and to a lesser extent via H-abstraction resulting in the peroxy radical CH3SSCH2OO in the presence of O2. The latter undergoes a fast two-step isomerization process leading to HOOCH2SSCHO. CH3S and CH3SOH are both converted to SO2 and CH3O2 with near unity yields under atmospheric conditions.

15.
Environ Sci Technol ; 54(18): 11087-11099, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786344

RESUMO

Autoxidation has been acknowledged as a major oxidation pathway in a broad range of atmospherically important compounds including isoprene, monoterpenes, and very recently, dimethyl sulfide. Here, we present a high-level theoretical multiconformer transition-state theory study of the atmospheric autoxidation in amines exemplified by the atmospherically important trimethylamine (TMA) and dimethylamine and generalized by the study of the larger diethylamine. Overall, we find that the initial hydrogen shift reactions have rate coefficients greater than 0.1 s-1 and autoxidation is thus an important atmospheric pathway for amines. This autoxidation efficiently leads to the formation of hydroperoxy amides, a new type of atmospheric nitrogen-containing compounds, and for TMA, we experimentally confirm this. The conversion of amines to hydroperoxy amides may have important implications for nucleation and growth of atmospheric secondary organic aerosols and atmospheric OH recycling.


Assuntos
Amidas , Aminas , Aerossóis , Hidrogênio , Oxirredução
16.
J Phys Chem A ; 124(40): 8128-8143, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32852951

RESUMO

Pulsed laser photolysis coupled with infrared (IR) wavelength modulation spectroscopy and ultraviolet (UV) absorption spectroscopy was used to study the kinetics and branching fractions for the acetonyl peroxy (CH3C(O)CH2O2) self-reaction and its reaction with hydro peroxy (HO2) at a temperature of 298 K and pressure of 100 Torr. Near-IR and mid-IR lasers simultaneously monitored HO2 and hydroxyl, OH, respectively, while UV absorption measurements monitored the CH3C(O)CH2O2 concentrations. The overall rate constant for the reaction between CH3C(O)CH2O2 and HO2 was found to be (5.5 ± 0.5) × 10-12 cm3 molecule-1 s-1, and the branching fraction for OH yield from this reaction was directly measured as 0.30 ± 0.04. The CH3C(O)CH2O2 self-reaction rate constant was measured to be (4.8 ± 0.8) × 10-12 cm3 molecule-1 s-1, and the branching fraction for alkoxy formation was inferred from secondary chemistry as 0.33 ± 0.13. An increase in the rate of the HO2 self-reaction was also observed as a function of acetone (CH3C(O)CH3) concentration which is interpreted as a chaperone effect, resulting from hydrogen-bond complexation between HO2 and CH3C(O)CH3. The chaperone enhancement coefficient for CH3C(O)CH3 was determined to be kA″ = (4.0 ± 0.2) × 10-29 cm6 molecule-2 s-1, and the equilibrium constant for HO2·CH3C(O)CH3 complex formation was found to be Kc(R14) = (2.0 ± 0.89) × 10-18 cm3 molecule-1; from these values, the rate constant for the HO2 + HO2·CH3C(O)CH3 reaction was estimated to be (2 ± 1) × 10-11 cm3 molecule-1 s-1. Results from UV absorption cross-section measurements of CH3C(O)CH2O2 and prompt OH radical yields arising from possible oxidation of the CH3C(O)CH3-derived alkyl radical are also discussed. Using theoretical methods, no likely pathways for the observed prompt OH radical formation have been found and the prompt OH radical yields thus remain unexplained.

17.
J Phys Chem A ; 124(14): 2885-2896, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32196338

RESUMO

Monoterpenes are a group of volatile organic compounds (VOCs) emitted to the atmosphere in large amounts. Studies have linked the autoxidation of monoterpenes to the formation of secondary organic aerosols, which impact Earth's climate and human health. Here, we study the hydroxy peroxy radicals formed by OH- and O2-addition to the six atmospherically relevant monoterpenes α-pinene, ß-pinene, Δ3-carene, camphene, limonene, and terpinolene. The six monoterpenes all have a six-membered ring but differ in the binding pattern of the four remaining carbon atoms and the position of the double bond(s). We use a multiconformer transition state theory approach to calculate the rate coefficients of the peroxy radical hydrogen-shift (H-shift) and endoperoxide formation reactions of these peroxy radicals. Our results suggest that primarily the isomers with a carbon-carbon double bond remaining after OH- and O2-addition undergo unimolecular reactions with rate coefficients large enough to be of atmospheric importance. This greatly limits the number of potentially important unimolecular pathways. Specifically, we find that the ring-opened α- and ß-pinene isomers as well as isomers of limonene and terpinolene have unimolecular reactions that are fast enough to likely dominate their reactivity under most atmospheric conditions.

18.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071211

RESUMO

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

19.
J Phys Chem A ; 123(49): 10620-10630, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31711286

RESUMO

Epoxide formation was established a decade ago as a possible reaction pathway for ß-hydroperoxy alkyl radicals in the atmosphere. This epoxide-forming pathway required excess energy to compete with O2 addition, as the thermal reaction rate coefficient is many orders of magnitude too slow. However, recently, a thermal epoxide-forming reaction was discovered in the ISOPOOH + OH oxidation pathway. Here, we computationally investigate the effect of substituents on the epoxide formation rate coefficient of a series of substituted ß-hydroperoxy alkyl radicals. We find that the thermal reaction is likely to be competitive with O2 addition when the alkyl radical carbon has a OH group, which is able to form a hydrogen bond to a substituent on the other carbon atom in the epoxide ring being formed. Reactants fulfilling these requirements can be formed in the OH-initiated oxidation of many biogenic hydrocarbons. Further, we find that ß-OOR alkyl radicals react similarly to ß-OOH alkyl radicals, making epoxide formation a possible decomposition pathway in the oxidation of ROOR peroxides. GEOS-Chem modeling shows that the total annual production of isoprene dihydroxy hydroperoxy epoxide is 23 Tg, making it by far the most abundant C5-tetrafunctional species from isoprene oxidation.

20.
J Phys Chem Lett ; 10(20): 6260-6266, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31545897

RESUMO

We show that the diastereomers of hydroxy peroxy radicals formed from OH and O2 addition to C2 and C3, respectively, of crotonaldehyde (CH3CHCHCHO) undergo gas-phase unimolecular aldehydic hydrogen shift (H-shift) chemistry with rate coefficients that differ by an order of magnitude. The stereospecificity observed here for crotonaldehyde is general and will lead to a significant diastereomeric-specific chemistry in the atmosphere. This enhancement of specific stereoisomers by stereoselective gas-phase reactions could have widespread implications given the ubiquity of chirality in nature. The H-shift rate coefficients calculated using multiconformer transition state theory (MC-TST) agree with those determined experimentally using stereoisomer-specific gas-chromatography chemical ionization mass spectroscopy (GC-CIMS) measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...